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Abstract

In this paper we present two new algorithms that com-
pute the linear optimal transform in high-rate transform
coding, for non Gaussian data. One algorithm computes
the optimal orthogonal transform, and the other the optimal
linear transform. Comparison of the performances in high-
rate transform coding between the classical Karhunen-
Loève Transform (KLT) and the transforms returned by the
new algorithms are given. On synthetic data, the transforms
given by the new algorithms perform significantly better
that the KLT, however on real data all the transforms, in-
cluded KLT, give roughly the same coding gain.

1. Introduction

Common sources such as speech and images have con-
siderable “redundancy” that scalar quantization cannot ex-
ploit. Strictly speaking the term “redundancy” refers to the
statistical correlation or dependence between the samples of
such sources and is usually referred to asmemoryin the in-
formation theory literature. It is well known that “removing
the redundancy” in the data before scalar quantizing it leads
to much improved codes. In transform coding, the redun-
dancy is reduced by transforming the data before a scalar
quantization. Generally the transform is linear. In this type
of transform coding, an input vectorX of sizeN is trans-
formed into another vectorS of the same dimension; the
componentsSi, i = 1, . . . , N , of that vector are then inde-
pendently quantified and fed to the encoder. High resolution
theory shows that the Karhunen-Loève transform (KLT) is
optimal for Gaussian sources [1], and the asymptotic low
resolution analysis does likewise [2]. Transform coding has
been extensively developed for coding images and video
(for example, H.261, H.263, JPEG, and MPEG), where the
discrete cosine transform (DCT) is most commonly used
because of its computational simplicity and its good perfor-
mance. Special transform codes are subband codes which
decompose an image into separate images by using a set of
linear filters. The resulting subbands can then be quantized,
e.g., by scalar quantizers. The discrete wavelet transform
(DWT) is a particular subband code, which is used in the

new image compression standard JPEG 2000.
The basic idea that leads to the use of linear pre-

processing before coding lies in the de-correlation effect be-
tween the pixel values that allows the use of simple source
encoders. Though appealing, this idea is hampered by the
fact that linear processing alone may not achieve total in-
dependence in the case of non-Gaussian sources. This ex-
plains why most of the compression methods (JPEG, JPEG
2000) that perform well use linear pre-processing and some
form of context modeling. Through context modeling it is
possible to extract the dependencies remaining in the data
after linear pre-processing in order to improve the compres-
sion performance.

For non Gaussian data, the linear transform that performs
best in high rate transform coding does not decorrelate the
data in general, and this result remains valid when the trans-
form is constrained to be orthogonal. Hence, the KLT is not
the best linear transform in high rate transform coding for
non Gaussian data. Moreover in image coding it is well
known (see e.g., [3]) that after a DWT the wavelets coeffi-
cients obtained from an image are not Gaussian and hence,
pixels are not Gaussian, even if we neglect the fact that they
are quantized data. Independent component analysis (ICA)
is a recently developed technique which aims at finding a
linear transform that minimizes the statistical dependence
between the transform coefficients. The mutual informa-
tion is a natural measure of the dependence between random
variables. Therefore, finding a transform which minimizes
the mutual information between the transform coefficients
is a very natural way of performing ICA. One may expect
that this ICA transform is optimal for a linear transform
coding system, since it reduces the redundancy between the
components as far as it can. But it is not quite so, since the
distortion is measured in term of the mean squared error,
which favors orthogonal transforms and the ICA transform
is not orthogonal in general.

In section 2, we show that the optimal linear transform
for a high-rate linear transform coding system employing
entropy-constrained uniform quantization is the one that
minimizes a contrastC which is equal to the sum of the
mutual information between the transform coefficients and
another term which may be interpreted as a kind of distance
to orthogonality of the transform. A presentation of ICA is



given in section 3 and its link to transform coding is elab-
orated on section 4. In section 5, we propose two new al-
gorithms for the minimization ofC. Both algorithms are
derived from the mutual information based ICA algorithm
by Pham calledICAinf [4]. A comparison between the
performances of the transforms returned by the new algo-
rithms and that of the KLT, using both synthetic and real
data, is given in section 6.

2. Optimal transform in transform coding

The class of signals to be encoded is represented by
a random vectorX = (X1, . . . , XN )T of sizeN . Let
(Ω, E , P ) be the probability space associated toX : Ω →
RN . A transform coder applies a transformA : RN → RN

to X in order to obtain a random vectorS better suited to
coding thanX. To construct a finite code, each coefficient
Si is approximated by a quantized variableŜi. We concen-
trate on scalar quantizations, which are most often used for
transform coding. The decoder then applies a transforma-
tion B to Ŝ = (Ŝ1, . . . , ŜN )T in order to obtain an approx-
imation X̂ of X. In this paper we assumeB = A−1 and
the transformA is linear.

2.1. Entropy-constrained scalar quantization

A scalar quantizerQ approximates a random variableZ
by a quantized variablêZ. It is a mapping from the source
alphabetR to a reproduction codebook{ẑk}k∈K ⊂ R,
whereK is an arbitrary countable index set. Quantiza-
tion can be decomposed into two operations: the lossy en-
coderα : R → K is specified by a partition ofR into
partition cellsSk = {z ∈ R |α(z) = k}, k ∈ K, and
the reproduction decoderβ : K → R is specified by the
codebook{ẑk}k∈K. We denotepk = Pr{Z ∈ Sk} =
Pr{Ẑ = ẑk}. The Shannon theorem [5] proves that the
entropyH(Ẑ) = −

∑
k pk log2 pk is a lower bound of the

average number of bits per symbol used to encode the val-
ues ofẐ. Arithmetic entropy coding achieves an average
bit rate that can be arbitrarily close to the entropy lower
bound (see e.g., [9]); therefore, we shall consider that this
lower bound is reached. Anentropy constrained scalar
quantizeris designed to minimizeH(Ẑ) for a fixed mean
square distortionD = E[(Z − Ẑ)2], whereE[Z] denotes
the expectation ofZ. Consider the varianceσ2 of Z and
Z̃ = (Z − E[Z])/σ the standardized random variable as-
sociated toZ; let h(Z̃) be the differential entropy of̃Z,
h(Z̃) = −

∫ +∞
−∞ p(z̃) log2 p(z̃)dz̃, wherep(z̃) denotes the

probability density function (pdf) of̃Z. A result from high
resolution quantization theory (see e.g., [5]) is that the quan-
tizer performance is described by

D ' c σ2 2−2R, with c =
22h(Z̃)

12
, (1)

whereR = H(Ẑ) is the minimum average bit rate, and the
constantc depends only on the pdf shape.

2.2. Generalized coding gain

Coding (quantizing and entropy coding) each transform
coefficientSi separately splits the total number of bits a-
mong the transform coefficients in some manner. This bit
allocation problem can be stated this way: one is given
a set of quantizers described by their high rate-distortion
performances—see (1)—asDi ' ci σ

2
i 2−2Ri (i = 1,

. . . , N ), whereσ2
i is the variance ofSi and the constant

ci is associated with the standardized variableS̃i of Si.
The problem is to minimize the end-to-end distortionD =
N−1

∑N
i=1 E[(Xi − X̂i)2] given a maximum average rate

R = N−1
∑N

i=1Ri. Let us introduce the elementsbm,n of
the matrixA−1 = [bm,n]. If we assume that the quantizer
error signals,Si − Ŝi, i = 1, . . . , N , are white and mu-
tually uncorrelated, the end-to-end distortion can then be
directly computed by a weighting sum of the distortion of
each transform coefficient as

D =
1
N

N∑
j=1

E
[(
Xj − X̂j

)2]
(2)

=
1
N

N∑
j=1

E
[∣∣∣ N∑

i=1

bj,i(Si − Ŝi)
∣∣∣2] =

1
N

N∑
i=1

wiDi,

where the weightwi corresponds to the square euclidean
norm of theith column ofA−1.

The arithmetic mean of thewiDis is equal to or greater
than their geometric mean, with equality if and only if all
the terms are equal. Therefore, under the constraint of a
given average bit rateR, the distortionD is minimum if and
only if all thewiDis are equal, in which case the minimum
value of the end-to-end distortion can be approximated as
follows

DA(R) '

[
N∏

i=1

wi ci σ
2
i

] 1
N

2−2R. (3)

Let I, σ?2
i andc?i be respectively the identity transform,

the variance ofXi and the constant associated with the stan-
dardized random variable ofXi according to (1). The dis-
tortion rate (3) may then be used to define a figure of merit
that we call thegeneralized coding gain

G? =
DI(R)
DA(R)

=

[
N∏

i=1

c?i σ
?2
i

wiciσ2
i

] 1
N

. (4)

The generalized coding gain is the factor by which the dis-
tortion is reduced because of the linear transformA, assum-
ing high rate and optimal bit allocation.

2.3. Optimal transform for coding

Finding the matrixA which maximizesG? is the same
problem as finding the matrixA which maximizes the gen-
eralized maximum reducible bitsR?

max = 1
2 log2G

?, or



equivalently, finding the linear transform which minimizes
the contrast

C(A)=I(S1; . . . ;SN ) +
1
2

log2

det Diag[A−TA−1]
detA−TA−1

, (5)

where the first term of (5) is the mutual information∫
RN p(s) log2

p(s)
p(s1)···p(sN ) ds between the random variables

S1, . . . , SN , and for any square matrixC, Diag(C) de-
notes the diagonal matrix having the same main diagonal
asC. Indeed, using the relation (1) and the following re-
lations h(X) =

∑N
i=1 h(Xi) − I(X1; · · · ;XN ), a sim-

ilar one with S and h(S) = h(X) + log2 |detA| (see
e.g. [9] for notions of information theory), some calculus
give R?

max = 1
N I(X1; · · · ;XN ) − 1

N I(S1; · · · ;SN ) −
1
N log2 |detA| − 1

2N log2

∏N
i=1 wi and the last two terms

are equal to the opposite of the second term of (5).
The mutual information ofS1, . . . , SN is a measure

of the statistical dependence between the transform coef-
ficientsSi: it is always non-negative, and zero if and only
if the variables are statistically independent. As for the sec-
ond term in (5), it is always non-negative, and zero if and
only if A−1 is a transform with orthogonal columns. The
columns may not be of unit Euclidean norm. In other words,
the second term of the contrastC(A) can be interpreted as a
kind of distance to orthogonality for the transformA. Fur-
thermore, ifD is a diagonal matrix, one can verify that
C(DA) = C(A), i.e., the contrast is scale invariant. As
a consequence, one can normalize the rows ofA−1 to have
unit norm and using equal quantizer step sizes.

3. Independent component analysis

A common problem encountered in a variety of disci-
plines, including data analysis, signal processing, and com-
pression, is finding a suitable representation of multivariate
data. For computational and conceptual simplicity, such a
representation is often sought as a linear transformation of
the original data. Well-known linear transformation meth-
ods include, for example, principal component analysis
(PCA). A recently developed linear transformation method
is the independent component analysis, in which the de-
sired representation is the one that minimizes the statistical
dependence of the components of the representation. Al-
though non-linear forms of ICA also exist, we shall only
consider the linear case here.

Hyvärinen [7] gives the following definition for the
noise-free ICA model, which is of primary interest in our
study.

Definition 1 (Noise-free ICA model) ICA of a random
vectorX of sizeN consists of estimating the following gen-
erative model for the data:

X = BS (6)

where B is a constantN × M “mixing” matrix, the
latent variables (components)Si in the vector S =
(S1, . . . , SM )T are assumed independent.

In the following, we assume that the dimension of the
observed data equals the number of the independent com-
ponents, i.e.,N = M , and that the matrixB is invert-
ible. In this situation, the identifiability of the noise-free
ICA model can be assured under the following fundamental
restrictions (in addition to the basic assumption of statisti-
cal independence) that all the independent componentsSi,
with the possible exception of one component, must be non-
Gaussian [6].

Note that identifiability here means only that the inde-
pendent components and the columns ofB can be estimated
up to a multiplicative constant and a permutation. Indeed,
any multiplication of an independent component in (6) by a
constant could be canceled by a division of the correspond-
ing column of the mixing matrixB by the same constant.
Further, the definition of the noise-free ICA model implies
no ordering of the independent components, which is in
contrast to, e.g., PCA.

The estimation of the data model of ICA is usually per-
formed by formulating an objective function and then min-
imizing or maximizing it. The mutual information is a nat-
ural measure of the dependence between random variables.
Finding a transform that minimizes the mutual information
between the componentsSi is a very natural way of estimat-
ing the ICA model [6]. The problem with mutual informa-
tion is that it is difficult to estimate. One needs a good esti-
mate of the density. This problem has severely restricted the
use of mutual information in ICA estimation. Some authors
have used approximations of mutual information based on
polynomial density expansions [6], which lead to the use
of higher-order cumulants. More recently, in [4], Pham has
proposed fast algorithms to perform ICA based on the use
of mutual information.

4. Link between transform coding and ICA

The criterion (5) may be decomposed into

C(A) = CICA(A) + CO(A), (7)

whereCICA(A) = I(S1; . . . ;SN ), and

CO(A) =
1
2

log2

[
det Diag(A−TA−1)

detA−TA−1

]
. (8)

The first termCICA(A) corresponds to the mutual informa-
tion criterion in ICA. The second termCO(A) measures a
pseudo-distance to orthogonality of the transformA: it is
non negative and can be zero if and only if the columns
of A−1 are orthogonal. In general, the optimal transform
Aopt in transform coding, i.e., the transform which mini-
mizes the contrast defined in the relation (5), will be differ-
ent from thatAICA which minimizes the first term of (5),
i.e., the solution of the ICA problem. Note that the contrast
C(A) is always non-negative, and that it is equal to zero if
and only ifA is a transform with orthogonal columns which
produces independent components. Therefore, when such a
transform exists, it is both the solution of the compression



problem and that of the ICA problem. Unfortunately, for
most sources, it is very unlikely to find orthogonal trans-
forms that produce independent components.

It is important to notice here that the classical assump-
tion made in blind source separation problems, that is the
observations are obtained from a linear mixing of indepen-
dent sources, is not really required in the problem of finding
the transform that maximizes the generalized coding gain.

The expression of the contrast (5) depends on the defi-
nition of the distortion. In this work, we measure the dis-
tortion as mean squared error (MSE). Therefore, it is not
surprising that orthogonal transforms are favored over other
linear transforms since they are energy-preserving.

5. Modified ICA algorithms for coding

In this section, we propose two algorithms for the min-
imization of the contrast (5). The first algorithm, called
GCGsupfor Generalized Coding Gain Supremum, consists
of a modified version of the mutual information based ICA
algorithm by Pham [4] calledICAinf . The second term
of (5) has been incorporated inICAinf in order to find the
optimal linear transformAopt which minimizes the contrast
(5). In the second new algorithm, calledICAorth for In-
dependent Composent Analysis Orthogonal, the algorithm
ICAinf has been modified in order to find the optimal or-
thogonal matrixAorth that minimizes the contrastC(A).

5.1. Algorithm GCGsup

The minimization of the criterion (5) can be done
through a gradient descent algorithm, but a much faster
method is the Newton algorithm (which amounts to using
the natural gradient [8]). As in [4], because of the multi-
plicative structure of our optimization problem, we use mul-
tiplicative increment of the parameterA rather than additive
increment. Starting with a current estimatorÂ, it consists
of expandingC(Â + EÂ) with respect to the matrixE up
to second order and then minimizing the resulting quadratic
form in E to obtain a new estimate. Note that the parameter
E is a matrix of orderN . This method requires the computa-
tion of the Hessian1 of C(Â + EÂ) with respect toE , which
is quite involved. For this reason, we will approximate it by
the Hessian ofC(Â + EÂ), computed under the assump-
tion that the transform coefficientŝSi are independent. The
method is then referred to as quasi-Newton.

Although those simplifications result in a slower conver-
gence speed about the solution, they cause the robustness
of the algorithm to be improved by reducing the risk of di-
vergence when the initial estimator̂A0 is far from the final
solution. Note that the final solution is the same as that
obtained without simplification since the algorithm con-
sists of cancelling the first order terms in the expansion of
C(A + EA).

1The Hessian of a function of several variables is the matrix of its sec-
ond partial derivatives.

Given that (see e.g., [9])h(X) =
∑N

i=1 h(Xi) −
I(X1; . . . ;XN ), h(S) =

∑N
i=1 h(Si) − I(S1; . . . ;SN ),

h(S) = h(X) + log2 |detA|, and the termh(X) does not
depend onA, minimizing the contrast (5) is the same as
minimizing C̃(A) = CO(A) + C̃ICA(A) where

C̃ICA(A) =
N∑

i=1

h(Si)− log2 |detA|. (9)

Using the results of [10] it can be seen that the Taylor
expansion ofC̃ICA(A + EA) up to second order may be
approximated as follows

C̃ICA(A + EA) = C̃ICA(A) +
∑

1≤i 6=j≤N

E[ψSi
(Si)Sj ]Eij+

+
1
2

∑
1≤i 6=j≤N

{E[ψ2
Si

(Si)] E[S2
j ]E2

ij + EijEji}+ · · · , (10)

where the functionψSi is equal to the derivative of
− log2 p(si) and is known as the score function, which can
be viewed as the gradient of the entropy functional. This
approximation concerns only the second order terms in the
expansion, butnot the first order terms. It relies essentially
on the assumption of independent transform coefficients,
which may not be valid if the solution of the ICA problem is
far from the solution that minimizes the contrast (5). But it
is quite useful since it leads to a decoupling in the quadratic
form of the expansion.

Let M = A−T A−1. One may verify that the Taylor
expansion ofCO(A + EA) with respect toE and around
E = 0, up to second order, is given by

CO(A + EA) = CO(A)−
∑

1≤i 6=j≤N

Mji

Mii
Eji −

1
2

∑
1≤i 6=j≤N

EijEji

+
∑

1≤i,j,k≤N

j 6=i andk 6=i

[(
Mjk

2Mii
− MijMik

M2
ii

)
EjiEki +

Mkj

Mkk
EjiEik

]

+
∑

1≤i 6=j≤N

Mji

Mjj
EiiEji + · · · (11)

The quadratic form associated with the above expansion is
quite involved and is not positive. One possible approx-
imation consists in neglecting the non diagonal elements
of M, which amounts to assuming that the optimal linear
transform is close to an orthogonal transform. Under this
hypothesis, one may verify that

CO(A + EA)≈ CO(A)−
∑

1≤i 6=j≤N

Mji

Mii
Eji +

+
1
2

∑
1≤i 6=j≤N

[
Mjj

Mii
E2

ji + EjiEij

]
+ · · · (12)

The quadratic form associated with the above expansion is
now positive, but not positive definite. However, this is suf-
ficient for the matrix associated with the quadratic form of



the Taylor expansion of̃C(A) to be positive definite, which
ensures the stability of the iterative algorithm. Finally we
have

C̃(A + EA) ≈ C̃(A) +
∑

1≤i 6=j≤N

Eij

[
E[ψSi

(Si)Sj ]−
Mij

Mjj

]
+

+
1
2

∑
1≤i 6=j≤N

{[
E[ψ2

Si
(Si)]E[S2

j ] +
Mii

Mjj

]
E2

ij + 2EijEji

}
+ · · · (13)

Explicitly, the iteration consists of solving the linear equa-
tions[

E[ψ2
Si

(Si)]E[S2
j ] + Mii

Mjj
2

2 E[ψ2
Sj

(Sj)]E[S2
i ] + Mjj

Mii

][
Eij

Eji

]

=

[
Mij

Mjj
− E[ψSi

(Si)Sj ]
Mji

Mii
− E[ψSj

(Sj)Si]

]
. (14)

The indeterminate diagonal termsEii are arbitrarily fixed to
zero. Then the estimator̂A is left multiplied byI + E in
order to update it. In this expression, the probability den-
sity functions being unknown, the score functionψSi

(si) is
replaced by an estimation (see [4]) and the expectations are
estimated by empirical means.

5.2. Algorithm ICAorth

In this section, we propose a modified version of the mu-
tual information based ICA algorithm by Pham [4] in order
to find the orthogonal transform that minimizes the contrast
(5). Since the second term of (5) vanishes for any othogo-
nal matrixA, this amounts to finding the orthogonal trans-
form which minimizes the first term of (5), or equivalently,
which minimizesC̃ICA(A). If the matrixA is orthogonal,
so isA + EA, providing thatI + E be orthogonal. This
last condition will be satisfied up to second order ifE is
anti-symmetric, since(I + E)T (I + E) = I + ETE dif-
fers from the identity only by second order terms. LetE be
anti-symmetric. The Taylor expansion of̃CICA(A + EA)
becomes

C̃ICA(A + EA) = C̃ICA(A)+

+
∑

1≤i<j≤N

{
E[ψSi

(Si)Sj ]− E[ψSj
(Sj)Si]

}
Eij +

+
1
2

∑
1≤i<j≤N

E2
ij

[
E[ψ2

Si
(Si)]E[S2

j ] + E[ψ2
Sj

(Sj)]E[S2
i ]− 2

]
+ · · · , (15)

and the minimization of the second term in the above ex-
pansion yields

Eij =
E[ψSj

(Sj)Si]− E[ψSi
(Si)Sj ]

E[ψ2
Si

(Si)] E[S2
j ] + E[ψ2

Sj
(Sj)] E[S2

i ]− 2
. (16)

Actually, A + EA is not a true orthogonal transform. This
may be overcome by replacingA + EA with eEA = (I +
E+E2/2!+ · · · )A, which is an orthogonal matrix differing
from A + EA only by second order terms.

6. Simulation results

In this section, we are interested in comparing the per-
formances ofAopt, Aorth, AICA, and the KLT for the in-
dependent coding ofN information sources which are both
statistically dependent and non-Gaussian. Our objective
metric to measure the performance of a transform is the
generalized coding gain (4). Given bothN sources and a
transform, the estimation of (4) requires good estimates of
the pdfs of each source as well as each transformed com-
ponent, which may be very difficult to obtain. In the next
section, we shall elaborate on a more “practical” way of
evaluating (4) which consists in actually coding the trans-
formed components and measuring both the actual bit-rate
(i.e., the first order entropy of quantized data) and the actual
end-to-end distortion.

6.1. Evaluation methodology

The sources under investigation are either 1D signals
or multidimensional-like images. In the latter, each im-
age is first converted into a 1D-signal by scanning ver-
tically column by column. The multidimensional signal
X = (X1, . . . , XN )T resulting from this pre-processing is
then linearly transformed using an invertible linear trans-
form A to produce the vectorS = (S1, . . . , SN )T whose
components are coded separately. Thei-th componentSi

is first high-rate quantized with a uniform scalar quantizer
of quantization stepqi. This givesŜi. The bit-rateRi is
then estimated by computing the empirical first order en-
tropy of Ŝi and the inverse transformA−1 is applied to
Ŝ = (Ŝ1, . . . , ŜN )T in order to reconstruct an approxima-
tion X̂ = (X̂1, . . . , X̂N )T of X. The distortion is the end-
to-end one, given in the relation (2) and the total average
rate is the empirical mean of theN ratesRi (1 ≤ i ≤ N).
It is well known that under the high-resolution hypotheses
the optimal allocation of rates between the transform co-
efficients results in equal weighted distortionswiDi (see
section 2). Moreover, using uniform scalar quantizers, bit
allocation amounts to choosing a quantization stepqi for
each of theN components, and for smallqi (i.e., satisfy-
ing the hypothesis of high resolution quantization forSi,
[5]) the distortionDi may be well approximated byq2i /12.
Therefore, the equal-weighted distortion property of the an-
alytical bit allocation solution gives a simple rule (for high
bit-rate): letc be a constant, then make all the quantiza-
tion stepsq1, . . . , qN such thatwiDi = c. This gives
qi =

√
12c/wi, for i = 1, . . . , N . When the constant

c varies (under the assumption of high resolution quantiza-
tion for each component) we obtain the classical asymptotic
curve (distortion versus bit-rate, or equivalently bit-rate ver-
sus distortion). In our tests, we consider that the hypothesis
of high resolution quantization is valid when for each com-
ponentSi, the relative deviation between the actual distor-
tion E[(Si − Ŝi)2] (where the expectation is estimated by
empirical mean) andq2i /12 is not greater than1%. For a
given high bit-rate, the ratio between the end-to-end distor-



tion read on the asymptotic curve obtained using the identity
transform and that read on the asymptotic curve obtained
usingA yields the generalized coding gain ofA. We have
tested two kinds of data, one consists in synthetic memo-
ryless sources and the sources of the second are wavelet
coefficients in the same sub-band (HH sub-band) of a mul-
tispectral satellite image Landsat.

In the first test, we haveN = 6 and the data size is216.
First we produce a white vector(S̃′1, . . . , S̃

′
N )T = S̃′ whose

the i-th component is the standardized random variable as-
sociated toS′i = Sign(Yi).|Yi|α, where(Y1, . . . , YN )T is
a standardized white Gaussian random vector. The expo-
nentα is an arbitrary positive real number. Whenα > 1
(resp.α < 1), S̃′i is super- (resp. sub-) Gaussian. Then, the
vectorX is obtained by the operationX = MS̃′, where
M is an arbitrary orthogonal matrix. The random vectorX
being white, the KLT does nothing on it and the general-
ized coding gainG? of the KLT is equal to0 dB. However,
the components ofX are not independent, and any algo-
rithm amongGCGsup, ICAorth and ICAinf gives the
same result: the componentsSi are independent, and the
generalized coding gainG? is the same forAICA, Aorth

and Aopt. In Tab. 1 we presentG? for different values
of α. We remark that whenα increases the hypothesis of

α 0.5 1 1.5 2 2.5
G? (dB) 1.4 0.0 1.65 3.2 4.8

Table 1. Generalized coding gain of Aorth.

high-resolution quantization is satisfied for an increasing
rate (e.g., whenα = 2.5, the rate must be greater than about
7 bits per coefficient).

The second test deals with real data, obtained from a
satellite multispectral image Landsat of dimension512 ×
512× 6 and coded with 8 bits per pixel. Each component is
decomposed in wavelet coefficients using the Daubechies 9-
7 DWT. In our test,N = 6 and the six information sources
we use are the six HH-subbands obtained by this way. In

KLT Aorth Aopt AICA

G? (dB) 3.05 3.05 3.1 1.55

Table 2. Generalized coding gain when the
sources are sub-band signals.

table 2, it can be seen thatAopt performs slightly better
than the KLT. As forAorth, it yields practically the same
result as the KLT. Therefore, for this type of data, when
one consider orthogonal transform, achieving decorrelation
is equivalent to minimizing the mutual information in terms
of coding performances. Those results need further investi-
gations.

7. Conclusion

In this paper we have presented two new algorithms that
compute the linear optimal transform for a high-rate linear
transform coding system employing entropy-constrained
uniform scalar quantization. One algorithm computes the
optimal orthogonal transform, and the other the optimal
linear transform. These algorithms are both derived from
an algorithm by D. T. Pham that minimizes the mutual in-
formation of the transformed components. Comparison of
the performances in high-rate transform coding between the
classical Karhunen-Lòeve Transform (KLT) and the trans-
forms returned by our algorithms are given. On synthetic
data, the transforms given by the new algorithms perform
significantly better that the KLT, however on real data all
the transforms, included KLT, give roughly the same cod-
ing gain.
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